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Abstract-The aim of this paper is to present a simple and efficient numerical technique for solving transient 
multidimensional heat transfer problems with melting/solidification processes. The proposed technique 
comprises an enthalpy-based method for solving the problems by a finite difference scheme, lump system 
behavior being assumed for each node. The computation technique is able to consider all kinds of boundary 
conditions, i.e. conduction, convection and radiation alone or in combination. The numerical method 
neglects convection effects in the liquid phase. The importance of this method lies in the fact that solutions 
are obtained with a personal microcomputer, thus providing a convenient and reliable tool for wide use 
in solving many problems of practical interest. The proposed method was verified against the two exact 
solutions available from the literature for a one-dimensional semi-infinite domain, one with constant 
temperature boundary condition and the second with constant heat flux. The technique was demonstrated 
by solving four different cases of two-dimensional problems. A comparison of the results obtained with a 
microcomputer using the technique presented in this paper with numerical results from the literature 
obtained using conventional methods, i.e. finite differences and finite elements methods, which generally 

involve the use of large computers, shows good agreement. 

1. INTRODUCTION 

HEAT TRANSFER accompanied by phase change is of 
great importance in many industrial applications, e.g. 
in food processing, casting and solar energy appli- 
cations. Solidification and melting problems are non- 
linear in the mathematical sense due to the existence 
of a moving boundary (interface) between the two 
phases associated with the release of latent heat. 
Neither position nor the velocity of the interface can 
be predicted in advance. Mathematical analysis 
becomes yet more complicated when the physical 
properties of the phase change material (PCM) are 
temperature dependent and when the boundary con- 
ditions are of the type that apply to convection and 
radiation. 

Phase change problems have a limited number of 
analytical solutions. Most of those available from the 
literature apply to simplified and idealized systems 
and are one dimensional. These analytical solutions 
have been reviewed by Lunardini [ 11, and some of the 
basic solutions may be found in the book of Carslaw 
and Jaeger [2]. 

t Present address : Faculty of Mechanical Engineering, 
Technion-Israel Institute of Technology, Haifa 32000, 
Israel. 

Numerical methods appear to offer a more practical 
approach for solving phase change problems assum- 
ing the moving interface can be traced. Reviews of 
this type of numerical solution have been presented 
by Shamsundar [3] and by Viskanta [4]. 

The fast running microcomputers that have 
appeared in the past few years are very useful for 
solving engineering problems. However, they have a 
limited dynamic memory. Thus numerical methods 
using small matrices and small numbers of operations 
become extremely important. Unfortunately, most 
numerical schemes, and especially those methods that 
are based on finite elements, use large numbers of 
variables and matrices to trace the moving interface 
and the changes in the temperature field. Other finite 
difference schemes use iterative algorithms as part of 
the numerical solution for tracing the interface. 

The objective of this paper is to present an efficient 
numerical method suitable for a microcomputer for 
solving multidimensional phase change problems with 
complicated geometries, for systems with diverse 
boundary conditions with respect to fixed temperature 
and to convective and radiative heat transfer. The 
proposed numerical method can also deal with phase 
changes caused by internal heat sources, such as an 
electric current flowing through the PCM. 

The proposed method was tested against two exact 
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NOMENCLATURE 

A area s, ~1, : Cartesian coordinates. 
B coefficients matrix 
Bio Biot number Greek symbols 
C heat capacity matrix a thermal diffusivity 

CP specific heat reflectivity 

C, heat capacity of an element ; thermal diffusivity ratio, rx,c(, 
(1 coordinate l- boundary 
D diagonal length A interval 
E”’ energy per unit volume E emissivity 
F radiation shape factor 0 nondimensional temperature 
II, convective heat transfer coefficient h’ thermal conductivity ratio, k,/k, 

11, radiative heat transfer coefficient T nondimensional time, cz, . f/R’. 
ii interface location 
k thermal conductivity Other symbol 
K conductivity matrix V divergence of. 
L latent heat 
II number of grid points Subscripts 
ii normal a air, surrounding 

il heat source, heat flux per unit of av average 
volume b index of equation (12) 

4 line heat source C convection 
R characteristic length i calculated element 
Rs nondimensional radius i neighbor element to the i element 
I coordinate I liquid 
S coordinate m melting 
St Stefan number r radiation 
I time S solid 
T temperature W wall 

b 
volume 0 initial 
constants vector 1 of time 2,. 

solutions of phase change problems and against two 
other numerical methods based on finite differences 
and finite elements, in four different cases. 

2. MATHEMATICAL FORMULATION 

The mathematical modeling presented below 
assumes that heat transfer by convection in the liquid 
phase of the PCM can be neglected. The heat balance 
equations that describe the transfer of heat during 
phase change can be broken up into three equations 
describing each of the three regions, the liquid phase, 
the solid phase, and the solid/liquid interface. 

In the liquid phase : 

div (k, grad T,) + cj = p, * C,,, - z T> T,,,. (I) 

In the solid phase : 

div (k, grad T,) + rj = ps - C,,, * 2 T< Tm (2) 

where k is the thermal conductivity, T the tempera- 
ture, 4 an internal heat source, p the density, C,, the 
specific heat and I the time. The subscripts s and I 

denote solid and liquid phases, respectively, and m 
denotes the melting front. 

At the solid/liquid interface : 

where fi is a direction normal to the interface, L the 
latent heat and h the interface location. The (+) in 
equation (3) is applicable to solidification and the (-) 
to melting. The boundary conditions of equations 
(I) and (2) can include conduction, convection and 
radiation, singly or in combination. The heat source 
4 can describe radiation at the boundary or into the 
PCM, or any.other heat source/sink, such as an elec- 
tric current flowing through the PCM. 

For a constant thermal conductivity coefficient, 
equations (I) and (2) can be written as 

2 . 
4-V T+q=p,*C,, at eaT T> T,,,+AT,,, (4) 

k;V’T+Q = p&>*$ T < T,,, -AT,. (5) 

In order to simplify the mathematical model, the 
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physical fact that in nonpure materials the phase 
change takes place in a temperature interval T,,, f  AT, 
can be used. The PCM then acquires a new set of 
physical properties in the region of the melting tem- 
perature interval (subscripts m), and equations (3)- 
(5) can be written as 

k,;V’T*cj = p&.~ TE T, *AT,,,. (6) 

The new set of PCM properties (subscripts m) have 
to be chosen in such a way as to ensure that the heat 
balance integral on the interface of the PCM will not 
change. In order to find the new set of properties, the 
heating process for a small unit of volume of PCM 
was analyzed (Fig. I). Let us assume that the density 
and the specific heat are 

where C, * pS and C’, * p, are constant values in the tcm- 
perature interval T,,,+AT,,,. With the new properties, 
the stored energy in a unit volume of PCM may be 
expressed as 

s Tnt+ATm 

p;C,,;dT+ ~rn*Cp~*dT 
T,-AT, 

+ p,*C,,-dT (8) 

thus 

T,-A7, E”’ = 
I 

Tm 
p;C,,;dT+ pS.C,;dT 

7;) 5 T/AT,, 

s 

T,+AT, 

+ 

Tn,-ATon 
!p,.&.dT+ 

m s 

T,+AT, 

PI - C,, * dT 
rm 

., 

+ 
S’ 

p,*C,;dT. (9) 
T,+AT, 

Time 
tl 

FIG. I. Time-dependent temperature of a unit of volume of 
PCM during heating from T,, (below the melting tem- 
perature) to T, (above the melting temperature). The dot- 
and-dash line represents the melting temperature and the 
dotted lines represent the boundaries of the phase change 

region. 

Equation (9) may be simplified to 

Equation (IO) describes the amount of energy 
stored in a unit volume as if there were no need to use 
the new set of PCM properties. The density pm on the 
right-hand side of equation (7) should correspond to 
a solid in the case of melting and to a liquid in the 
case of solidification. 

The thermal conductivity coefficient can be esti- 
mated as an arithmetic average 

k, = ;*(k,+k,) TsT,,,fAT,,,. (11) 

The new set of PCM properties makes it possible 
to express the phase change process in terms of a 
single equation 

k,;V’T+Q = p,,.C’,,h.g 

T<T,-AT, b=s 

T,,-AT,, < T< T,+AT,,, b=m 

T,,,+AT,,, < T b = I. 

Comparing equations (8) and (IO), one can see 
that, even for pure materials, which melt at a fixed 
temperature and not over a temperature interval, use 
of the new PCM properties and a dummy temperature 
interval can facilitate a simple solution. 

3. NUMERICAL SOLUTION 

There are several ways of solving equation (12) 
and calculating the temperature field during the phase 
change process [5]. In order to solve equation (12) 
in a multidimensional form, the following numerical 
scheme based on finite differences was chosen 

+4; 1 (13) 

where p is the time index, i the node index, and j 
the index for all the nodes in the neighborhood of 
node i. 

One can visualize the numerical scheme as dividing 
space into small elements. Since each element is very 
small, it functions as a small lumped capacity system. 
The heat capacity of each element is a function of the 
state 

c, = pi * c,, . vi. 

The thermal resistance R, to heat transfer by con- 
duction from the i element to its neighbors j, in the x 
direction in a Cartesian system, is 

R, = 
0.5 - A.x[ 0.5 - Axj 

AyYi.Az,.ki + Ay;A=;k,’ (15) 

The thermal resistance to heat transfer by convection 
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from the boundary node i to the surroundings at the 
temperature T, can be given as 

R, = A. 
I’ E 

The thermal resistance to heat transfer by radiation 
between two bodies as a result of a small temperature 
difference can be described using the radiation 
coefficient h, instead of h, in equation (16). 

For large temperature differences between the sur- 
face and the surroundings, the heat source 4 can be 
used to describe the effect of thermal radiation. In 
cases of thermal radiation, as a result of the difference 
between the element temperature Ti and the tem- 
perature of the surroundings Z&, the heat source 4 of 
element i will be given by &aA( T: - T,!), where E is 
the thermal emissivity, (T is the Stefan-Boltzmann con- 
stant and A is the area exposed to the radiation. 

The heat source 4 can also be used to calculate 
phase changes resulting from an internal heat source, 
such as an electric current, the amount ofenergy trans- 
ferred to each element is calculated, then used to rep- 
resent the heat source in equation (13). 

As presented by Carnahan el al. [5], the numerical 
scheme (13) has the following stability criterion 

At < (17) 

In calculating the time interval (I 7), one has to pay 
special attention to the fact that both the heat capacity 
C, and the thermal conductivity coefficient change 
during phase changes. In cases of radiation the stab- 
ility criterion becomes 

At < 

[ 

, 

S~~~.+~.(E-T~+~~.T:,~E.T~+~~.T~~ ’ 1 min (18) 
In addition, one must also devote special attention 

to the changes taking place in the temperature field in 
the PCM. To ensure energy conservation in the 
numerical scheme, it is very important to eliminate 
the possibility of the temperature changing over the 
entire melting temperature interval in a single time 
step. 

4. RESULTS AND DISCUSSION 

There are only a limited number of analytical solu- 
tions to phase change problems. Most are one dimen- 
sional and do not take the difference between liquid 
and solid densities into account. As the first veri- 
fication step, the present numerical solution was com- 
pared with two exact solutions of the Stefan problem 
from the book of Carslaw and Jaeger [2]. 

Case I. A one-dimensional melting problem in a 

semi-infinite body with constant wall temperature. 
The initial temperature is uniform and below the melt- 
ing temperature 0, = 0 when 0 = (T- T,J/( T,,, - To). 
The wall temperature is suddenly changed to 0 = I .25 
for every 7 > 0. The material CaC12 * 6H *O was taken 
as the PCM. It has the following physical properties : 
St = 0.175 when St = C,,JL*(T,,,-T,), p = 2.1 and 
K = 0.725. Figure 2 presents the numerical and the 
exact solutions. An infinite slab was taken as the semi- 
infinite body for the numerical solution (length of0.2). 
It can be seen that there is good agreement between the 
analytical and the numerical solutions as long as the 
slab acts as a semi-infinite body from the thermal 
point of view (7 = 0.054). 

Case 2. A one-dimensional solidification problem 
in an infinite body with constant heat flux. This 
type of problem is found in solidification around 
pipes in very large media due to coolant flow. The 
initial temperature is uniform and above the melting 
temperature 0, = I when 0 = (T-T,,,)/(T,-T,,,). A 
uniform line heat source (with a negative sign) 
q’= -100 W m-’ starts acting and thereafter 
stays constant for T > 0. The material Mg(NO,)?* 
6Hz0 (61.5 wt%), NH,NOA (38.5 wt%) was taken as 
the PCM. It has the following physical properties: 
9 = 0.5125 where SI = C,,/L*(T,,- T,,,), /I = 0.895 
and K = 0.78. Figure 3 presents the numerical and 
the analytical temperature solutions as a function 
of the dimensionless radius Rs, which is the position 
of the thermal influence (0 = 0.01) at 5 = 0.3. The 
solution of a melting problem with electric current 
flow would be similar to that for the positive line heat 
source. 

In cases I and 2, the one-dimensional phase change 
problems with constant temperature and constant 
heat flux boundary conditions were tested in Cartesian 
and cylindrical coordinate systems. It can be seen that 
there is a good agreement between the analytical and 
the numerical solutions of these one-dimensional 
problems. 

Two-dimensional analytical problems are necess- 
arily limited to simplified cases. The numerical solu- 
tions of the two-dimensional problems for various 
boundary conditions were tested against the numeri- 
cal solution of Lazaridis [6] based on finite differences 
and that of Hsiao and Chung [7j based on finite ele- 
ments. The two-dimensional phase change problem 
of a long prism is presented in Fig. 4. Because of the 
symmetry of the geometry, only the temperature 
field in one eighth of the prism had to be solved. Cases 
3-6 present phase change problems of that prism for 
different boundary conditions and different initial 
temperatures. 

Case 3. A solidification problem with constant 
wall temperature. The initial state of the PCM is 
liquid at its melting temperature 0 = 1 where 0 = 
(T- T,)/(T,- T,,,). The prism is suddenly exposed 
to a uniform wall temperature 0 = 0 for t > 0. 
St = 0.641 where St = C,,,/L* (T,,,- T,,,). Figures 
5 and 6 show the interface positions as a function 
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0.10 

Distance From The Wall [m] 

FIG. 2. Melting problem due to a constant wall temperature. 

of time along the diagonal and the center lines, respec- 
tively. On the assumption that the phase changes 
occur in the melting temperature interval, the use of 
the new set of physical properties P,,, * C, enables a 
good estimation of the temperature field in the PCM, 
but makes estimation of the interface location more 
difficult. Here interface location is predicted by para- 
bolic interpolation. In order to take into account all 
the latent heat effects, the initial temperature was 

chosen as T,,, + AT,,, instead of T,. From the agree- 
ment between the numerical solutions, one can see 
that T,,,+ AT, is a good choice for the initial tem- 
perature. 

Case 4. A solidification problem with constant 
wall temperature. The initial temperature of the 
PCM is 0 = 9/7, where B = (T- T,)/(T,,,- T,). The 
prism is suddenly exposed to a uniform wall tem- 
perature 0 = 0 for T > 0. Sf = 2 where St = C,,/L. 

-0.5 

-1.0 

-1.5 

‘F =0.06 Analytical Solution 

‘c =0.12 Analytical Solution 

.~~~~~~~-. ‘E =0.30 AMlytical Solution 

n ‘E =0.06 Numerical Solution 

0 I 4I.12 Numerical Solution 

0 T =0.30 Numexical Solution 

I 1 
0.1 0.2 0.3 

Dimensionless Radius r/Rs 

FIG. 3. Solidification problem due to a constant heat sink at the center of an infinite cylinder. 



678 Y. RABIN and E. KORIN 

FIG. 4. Pictorial representation of the cross-section of the 
prism involved in the two-dimensional phase change prob- 
lems solved in cases 3-6. The solution referred to one eighth 

of the prism. 

(T, - r,), /3 = 0.9 and h’ = 0.9. Figures 7 and 8 show 
the interface positions as a function of time along the 
diagonal and the center lines, respectively. 

Case 5. A solidification problem with convection 
from the wall of the prism to the surroundings. The 
initial temperature of the PCM is 0 = 9/7 where 
0 = (T- Ta)/( T,,, - TJ. The prism is suddenly exposed 
by convection to a surrounding region at a tempera- 
ture 0 = 0. Sf = 2 where St = C,,/L * (T,,, - T,), /I = 
0.9, K = 0.9 and Bio = has/k, = 2. Figures 9 and 10 

show the interface positions as a function of time 
along the diagonal and the center lines, respectively. 

Cases 3-5 show good agreement between the three 
different numerical solutions. One can see that the 
present work agrees better with the work of Hsiao 
and Chung (finite elements) along the diagonal of the 
prism and with Lazaridis’ work (finite differences) 
along the center line. 

The last case (case 6) presents a similar problem 
but with thermal radiation at the boundary. Such 
problems are solved by using the heat source 4 in each 
of the boundary elements. Assuming a gray body, the 
heat source 4 can be expressed by : di = u * Ai* F* E. 
(r: - T:‘). The validity of this scheme is shown by the 
good agreement between the different numerical solu- 
tions of the convection boundary problem (case 5). 
The term (Ti - T:‘) can be estimated by writing the 
term 4. T:” * (T,- T;), where Ta,, is the average tem- 
perature between T, and Ti. Using the new term, 
one can write the heat radiation coefficient as 
h, = 4-a. F*E* T&. One can then compare the differ- 
ent solutions of the same radiative phase change prob- 
lem obtained using the heat source 4 and the radiation 
coefficient h,. 

Cuse 6. Solidification due to thermal radiation 
from the wall of the prism to the surroundings. The 
initial temperature of the PCM is 0 = 9/7, where 
0 = (T- Ta)/( T, - Ta). The prism is suddenly exposed 
by convection to a surrounding region at a tempera- 
ture 0 = 0. St = 2 where Sf = C,,/L*(T,,,-T,), p = 
0.9, K = 0.9. The initial temperature of the prism 
is 363 K and the prism is exposed to the surround- 
ings at a temperature of 273 K. In that temperature 

0.6 - 

ir i_,, 

‘0.00 0.00 0.15 0.15 0.30 0.30 0.45 0.45 

FIG. 5. Interface location along the diagonal of a square region of a solidification problem due to a constant 
wall temperature, initially at the melting temperature. 
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Ftite Elements Solution By Hsiao et al. (7) 
Ftite Differences Solution By Laaidis (6) 

0.15 0.30 0.45 

679 

2 

FIG. 6. Interface location along the center line of a square region in a solidification problem due to a 
constant wall temperature, initially at the melting temperature. 

range the use of the term 4. T:“. (T, - Ti) instead a function of time along the diagonal and the center 
of the term (T:- T,?) involves an error range of lines, respectively. 
2%. The radiation coefficient h, is calculated for The agreement between the two methods of solu- 
each boundary element in each time interval. In the tion of the same problem, i.e. using h, or 4, is of the 
numerical solution, the Biot number was changed order of 97%. We conclude that the translation of 
from 9.15 at the beginning to an average of 5.25 at thermal radiation at the boundary to heat sources at 
r = 0.225. Figure 11 shows the interface positions as the boundary elements is good. Use of the radiation 

I 1 

Resent Numekal Solution 
0 Finite Elements Solution By Hsiao et Al. (7) 
+ Fbte Differences Solution By Lazaridis (6) 

FIG. 

o.oJ 
I I I 1 I 

0.00 0.05 0.10 0.15 0.20 0.25 

2 

7. Interface location along the diagonal of a square region in a solidification problem due to a constant 
wall temperature, initially at a liquid temperature. 
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(To-Twall)/(Tm-Twall)=9R 

st=2.0 

FIG. 8. Interface location along the center line of a square region in a solidification problem due to a 
constant wall temperature, initially at a liquid temperature. 

coefficient becomes less accurate as the temperature Basically, to solve heat transfer problems by using 
difference between the boundary and the sur- finite element methods, one has to solve the following 
roundings increases. equation : 

In order to evaluate the efficiency of the proposed 
numerical solution from the standpoint of application C*T+K-T+G=O (1% 
with a microcomputer with a limited memory 
capacity, let us compare it with other common where C and K denote the heat capacity and the con- 
numerical solutions based on finite elements. ductivity matrices, respectively, G is the vector of heat 

0.4 

8 0.3 

1 
j 

d 
e, 0.2 - 
E 

fI’oTa)/Pm-TaW7 

st=2.0 

ti.9 

B=o.g 
Bio=2.0 

- Resx~tNnmeaicalSolution 

FIG. 9. Interface location along the diagonal of a square region in a solidification problem due to a 
convection at the boundary, initially at a liquid temperature. 
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(lbTa)/(Tm--T&99/r 

st=2.0 

IdI. 

E-9 

BS2.0 

+//I Finite Elements Solution By Hsiao et aI. (7) 

FIG. 10. Interface location along the center line of a square region in a solidification problem due to a 
convection at the boundary, initially at a liquid temperature. 

sources and boundary conditions, and T denotes the Lees [9] was chosen for the present discussion, as was 
vector of the calculated temperatures. suggested by Morgan ef al. [lo] 

A detailed comparison of different numerical 
methods based on finite elements for solving heat 
transfer problems with phase changes is given by 

CP. (TV+ I +TP- I). ~+KF-(TP+~+T~+T~-~).: 

Dalhuijsen and Segal [8]. As suggested by Dalhuijsen +cP = 0. (20) 
and Segal, we will focus this discussion on the linear 
elements. There are several ways to accomplish dis- This scheme is straightforward and involves three time 
cretization of equation (19) in time. The algorithm of levels, where C, K and G are evaluated at the time 

0.6 

FIG. II. Interface location in a square region in a solidification problem due to radiation at the boundary, 
initially at a liquid temperature. 
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level p. For the numerical solution, the last scheme 
will be in the form 

where 

B--J’“+’ = V (21) 

B = (C”+:*AI.K~) (22) 
V = -f-At.KP.TP+(CP-:.A,.KP).TP-1 

+ ;.Ar.G”. (23) 

The matrices K and C and therefore B are of order 
n*n, where n is the number of grid nodes. During the 
computer simulation matrix B and vector V can be 
calculated directly, saving the unnecessary evaluation 
of K, C and G. In cases of one-dimensional heat trans- 
fer problems (using linear elements) matrix B has 
three non-zero diagonals, and therefore equation (21) 
can be solved by a simple algorithm. In fact, in one- 
dimensional problems, as in cases I and 2 above, it is 
preferable to save only 3 -11 of the n. n coefficients of 
matrix B in the computer memory. In two-dimen- 
sional problems there are more than three non-zero 
diagonals. In simple two-dimensional problems, such 
as cases 3-6 above, there are five non-zero diagonals in 
matrix B, however, solution of equation (21) requires 
saving at least (n + I) *n/2 coefficients of matrix B 
in memory. However, the solution of the general 
three-dimensional problems requires saving all n * n 
coefficients of matrix B. When estimating the amount 
of dynamic memory required for numerical solution, 
one must bear in mind that there are additional vec- 
tors of orders n to be placed in the computer memory : 
Tp+ ‘, TP, TP- ’ and V. (In some schemes other than 
Lees’ the vector TP- ’ is omitted but the remaining 
vectors and matrices do not change.) 

In contrast, in the proposed straightforward 
numerical scheme, represented by equation (I 3), only 
two vectors of order tf need be placed in memory : TPf ’ 
and TP. The size of the dynamic memory required for 
this scheme is only a function of the number of grid 
points. The heat capacity C, and the thermal resistance 
to heat flow R, can be calculated for each node at 
the relevant stage. The computer memory capacities 
needed for the finite elements and finite difference 
solutions are summarized in Table I. 

To obtain some idea of the running time required 
for solving this kind of problem using micro- 
computers, the solution of case 5 was tested for two 
different meshes on three versions of IBM-PC com- 

Table I. A comparison of the computer memory capacities 
required for solving the heat transfer problem using finite 
element and finite difference methods, where n is the number 

of grid points 

Proposed 
solution 

2.n 
2-n 
2-n 

Finite 
elements 

3*n+4*n 
(n+ I).n/2+4*n 

n-n-i-4-n 

Problem 
dimensionals 

One-dimensional 
Two-dimensional 

Three-dimensional 

Table 2. A comparison of the running times required for 
solving case 5, using three versions of IBM-PC compatible 
microcomputers and with different numbers of grid nodes 

20 x 20 IOX 10 
grid points grid points Microcomputer version 

2266.0 s 173.4 s XT, 8 MHz, 8086 + 8087 
269.4 s 20.8 s AT, 25 MHz, 80 386 + 80 387 

84.1 s 6.5 s AT, 33 MHz. 80486 

patible computers. The physical properties were k = 
1 Wm-‘K-‘,a,= IO-“m’s-‘andR= I m.Case5 
was solved using a mesh of IO x IO and 20 x 20 grid 
points (Fig. 4). The stability criteria (17) required 
nondimensional time intervals of Ar < 2.5 x 10m3 for 
the first mesh and As < 6.25 x 10m4 for the second. In 
order to eliminate the possibility of the temperature 
changing from below to above the melting tem- 
perature interval in one time step, i.e. to enforce 
energy conservation, the time intervals were reduced 
to A7 = 2.0 x 10m4 for the first mesh and to 
A7 = 6.0 x IO-’ for the second. Table 2 gives the 
results of the running time test using a turbo PASCAL 
5.0 compiler. 

5. CONCLUSIONS 

The proposed numerical scheme is capable of solv- 
ing phase change problems with boundary conditions 
of constant temperature and convection and/or radi- 
ation. Radiation and convection boundary conditions 
can easily be combined in the same problem. The 
resulting scheme is simple and straightforward and 
requires neither iteration nor tracing of the interface 
location. Since the physical properties of the PCM- 
the heat capacity and the thermal resistance to heat 
flow of each element-are determined by its tem- 
perature, the proposed numerical method can deal 
with more than one liquid/solid interface. 

Since the scheme is based on two temperature vec- 
tors only, the properties of each node being deter- 
mined at the beginning of each time interval according 
to the previous temperature field, it is suitable for 
solving phase change problems using a micro- 
computer with a limited dynamic memory. 

Comparison of the proposed numerical solution 
with exact solutions and with other numerical solu- 
tions based on finite differences and finite elements 
showed good agreement. Thus, the proposed numeri- 
cal scheme is a simple and reliable tool for obtaining 
fast solutions to many phase change problems. 

All the numerical solutions in the present work were 
obtained with an IBM PC microcomputer using a 
turbo PASCAL compiler. The running time for each 
numerical solution was a few minutes. 
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